Microcanonical unimolecular rate theory at surfaces. III. Thermal dissociative chemisorption of methane on Pt(111) and detailed balance.

نویسندگان

  • A Bukoski
  • H L Abbott
  • I Harrison
چکیده

A local hot spot model of gas-surface reactivity is used to investigate the state-resolved dynamics of methane dissociative chemisorption on Pt(111) under thermal equilibrium conditions. Three Pt surface oscillators, and the molecular vibrations, rotations, and the translational energy directed along the surface normal are treated as active degrees of freedom in the 16-dimensional microcanonical kinetics. Several energy transfer models for coupling a local hot spot to the surrounding substrate are developed and evaluated within the context of a master equation kinetics approach. Bounds on the thermal dissociative sticking coefficient based on limiting energy transfer models are derived. The three-parameter physisorbed complex microcanonical unimolecular rate theory (PC-MURT) is shown to closely approximate the thermal sticking under any realistic energy transfer model. Assuming an apparent threshold energy for CH(4) dissociative chemisorption of E(0)=0.61 eV on clean Pt(111), the PC-MURT is used to predict angle-resolved yield, translational, vibrational, and rotational distributions for the reactive methane flux at thermal equilibrium at 500 K. By detailed balance, these same distributions should be observed for the methane product from methyl radical hydrogenation at 500 K in the zero coverage limit if the methyl radicals are not subject to side reactions. Given that methyl radical hydrogenation can only be experimentally observed when the CH(3) radicals are kinetically stabilized against decomposition by coadsorbed H, the PC-MURT was used to evaluate E(0) in the high coverage limit. A high coverage value of E(0)=2.3 eV adequately reproduced the experimentally observed methane angular and translational energy distributions from thermal hydrogenation of methyl radicals. Although rigorous application of detailed balance arguments to this reactive system cannot be made because thermal decomposition of the methyl radicals competes with hydrogenation, approximate applicability of detailed balance would argue for a strong coverage dependence of E(0) with H coverage--a dependence not seen for methyl radical hydrogenation on Ru(0001), but not yet experimentally explored on Pt(111).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcanonical unimolecular rate theory at surfaces . I . Dissociative chemisorption of methane on Pt „ 111 ...

A model of gas–surface reactivity is developed based on the ideas that ~a! adsorbate chemistry is a local phenomenon, ~b! the active system energy of an adsorbed molecule and a few immediately adjacent surface atoms suffices to fix microcanonical rate constants for surface kinetic processes such as desorption and dissociation, and ~c! energy exchange between the local adsorbate–surface complexe...

متن کامل

Microcanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100).

A three-parameter microcanonical theory of gas-surface reactivity is used to investigate the dissociative chemisorption of methane impinging on a Ni(100) surface. Assuming an apparent threshold energy for dissociative chemisorption of E(0)=65 kJ/mol, contributions to the dissociative sticking coefficient from individual methane vibrational states are calculated: (i) as a function of molecular t...

متن کامل

A statistical model for activated dissociative adsorption: Application to methane dissociation on Pt(111)

A statistical model of activated dissociative adsorption is developed using microcanonical, unimolecular rate theory. Dissociation is treated as occurring through energy randomizing collisions between incident molecules and local clusters of surface atoms. The predictions of the statistical model are found to be in remarkable accord with existent experimental data for methane dissociative adsor...

متن کامل

Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111).

The dissociative sticking coefficient for CH4 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. The experimental results are used to optimize the three parameters of a microcanonical unimolecular rate theory (MURT) model of the reactive system. The MURT calculations ...

متن کامل

Microcanonical transition state theory for activated gas-surface reaction dynamics: application to H2/CU(111) with rotation as a spectator.

A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 9  شماره 

صفحات  -

تاریخ انتشار 2005